

Answer Key: Page 6

Sequence and Series Introduction:

Write the first five terms of the sequence.

- 1. $a_n = n!$ assume that n begins with 0
- 2. $a_n = 1 \frac{1}{n}$ assume that n begins with 1
- 3. $a_n = \frac{n!}{(n+2)!}$ assume that n begins with 0
- 4. $a_n = \frac{n}{n^2 + 1}$ assume that n begins with 1
- 5. $a_n = \frac{(-1)^n}{n!}$ assume that n begins with 1

Find the sum.

- 6. $\sum_{n=1}^{4} \frac{n+1}{n+2}$
- 7. $\sum_{i=1}^{4} (1-i)$
- 8. $\sum_{k=2}^{6} (-1)^k (2k)$
- 9. $\sum_{i=0}^{3} i!$

Arithmetic Sequence and Series:

- 10. Find the first 4 terms of the arithmetic sequence given the first term = 4 and common difference = -3.
- 11. Find the first 4 terms of the arithmetic sequence given the first term = 4 and common difference = -2.

Answer the question about the following arithmetic sequences:

12. Common difference: - 3

1st term: 7

what is the 99th term? (assume n starts with 1)

13. Common difference: - 2

3rd term: 15

what is the nth formula? (assume n starts with 1)

14. Common difference: 7

1st term: 2

what is the 17th term? (assume n starts with 1)

Evaluate the sum of the arithmetic series.

15.
$$\sum_{n=1}^{50} (2n+3)$$

Geometric Sequence and Series:

16. Determine whether the sequence $3, -2, \frac{4}{3}, -\frac{8}{9}, \frac{16}{27}, \dots$ is geometric. If it is, find its common ratio.

17. Find the first 5 terms of the geometric sequence with $a_1 = 2$ and $r = \frac{2}{3}$

Find the indicated term of the geometric sequence.

18. $a_1 = 5$, r = 1.1, $a_{20} = ?$

19. $a_1 = -23$, $r = \sqrt{2}$, $a_{23} = ?$

Write a formula for the nth term of the geometric sequence.

20.
$$a_1 = 2$$
, $r = -\frac{1}{3}$ (assume n starts with 1)

21.
$$a_1 = 4$$
, $r = \frac{1}{3}$ (assume n starts with 1)

Answer the question about the following geometric sequences:

- 22. 28th term: ? sequence: 2, 2.4, 2.88, 3.456, 4.1472,..
- 23. Common ratio: $r = \sqrt{3}$ 1st term: - 11 what is the 14th term?

Find the sum of the finite geometric series.

24.
$$\sum_{k=1}^{10} 4\left(\frac{3}{2}\right)^{k-1}$$

25. $\sum_{n=1}^{15} 3\left(\frac{5}{4}\right)^n$

Infinite Geometric Series:

Decide whether the infinite geometric series has a sum.

26.
$$\sum_{n=1}^{\infty} 3(\frac{6}{5})^{n-1}$$

27.
$$\sum_{n=1}^{\infty} \frac{1}{2} (\frac{1}{4})^{n-1}$$

Find the sum of the infinite geometric series (if it has one).

28.
$$\sum_{n=0}^{\infty} 4(\frac{2}{3})^n$$

29. $\sum_{n=1}^{\infty} 3(-\frac{1}{2})^n$

Binomial Theorem:

Evaluate the binomial coefficient.

30.
$$\binom{9}{7}$$

31. $\binom{9}{5}$

Use Pascal's Triangle to find the binomial coefficient.

32.
$$\binom{6}{2}$$

33. $\binom{6}{4}$

Use the Binomial Theorem to expand the binomial.

34.
$$(x - 3)^5$$

 $35.(2x-3)^3$

36. $(3 - 2x)^3$

Use Pascal's Triangle to expand the binomial.

37.
$$(x - 2y)^4$$

38. $(2x - y)^3$

Find the indicated term of the binomial expansion.

- 39. $(4h j)^8$ 6th term
- 40. $(a^2 + b)^{22}$ 15th term

Answer Key:

Sequence and Series Introduction:

Write the first five terms of the sequence.

1.
$$a_n = n!$$
 assume that n begins with 0
 1, 1, 2, 6, 24

 2. $a_n = 1 - \frac{1}{n}$ assume that n begins with 1
 $0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$

3.
$$a_n = \frac{n!}{(n+2)!}$$
 assume that n begins with 0

4.
$$a_n = \frac{n}{n^2 + 1}$$
 assume that n begins with 1

5.
$$a_n = \frac{(-1)^n}{n!}$$
 assume that n begins with 1

8

	<mark>, 1</mark>	1 1	1
-	1, <u>-</u> , -	6'24'	120

 $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{12}$ $\frac{1}{20}$ $\frac{1}{30}$

 $\frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \frac{4}{17}, \frac{5}{26}$

Find the sum.

- 6. $\sum_{n=1}^{4} \frac{n+1}{n+2}$ 61 20 7. $\sum_{i=1}^{4} (1-i)$ <u>– 6</u> 8. $\sum_{k=2}^{6} (-1)^{k} (2k)$
- 9. $\sum_{i=0}^{3} i!$ **10**

Arithmetic Sequence and Series:

- 10. Find the first 4 terms of the arithmetic sequence given the first term = 4 and common difference = -3. <mark>4, 1, —2, —5, …</mark>
- 11. Find the first 4 terms of the arithmetic sequence given the first term = 4 and common difference = -2. <mark>4, 2,0,—2,…</mark>

Answer the question about the following arithmetic sequences:

12.	Common difference: - 3	
	1 st term: 7	
	what is the 99th term? (assume n starts with 1)	<mark>-287</mark>
13.	Common difference: - 2	
	3rd term: 15	
	what is the nth formula? (assume n starts with 1)	$a_n = -2n + 21$
14.	Common difference: 7	
	1st term: 2	
	what is the 17th term? (assume n starts with 1)	<mark>114</mark>

Evaluate the sum of the arithmetic series.

15.
$$\sum_{n=1}^{50} (2n+3)$$
 2700

Geometric Sequence and Series:

16. Determine whether the sequence $3, -2, \frac{4}{3}, -\frac{8}{9}, \frac{16}{27}, \dots$ is geometric. If it is, find its common ratio.

Yes, r = -2/3

17. Find the first 5 terms of the geometric sequence with $a_1 = 2$ and $r = \frac{2}{3}$ $2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27}, \frac{32}{81}$

Find the indicated term of the geometric sequence.

18. $a_1 = 5$, r = 1.1, $a_{20} = ?$ 30.5795

 $a_n = 4(\frac{1}{2})$

19. $a_1 = -23$, $r = \sqrt{2}$, $a_{23} = ?$ -47104

Write a formula for the nth term of the geometric sequence.

20.
$$a_1 = 2$$
, $r = -\frac{1}{3}$ (assume n starts with 1) $a_n = 2\left(-\frac{1}{3}\right)^{n-1}$
21. $a_1 = 4$, $r = \frac{1}{3}$ (assume n starts with 1) $a_n = 4\left(\frac{1}{3}\right)^{n-1}$

Answer the question about the following geometric sequences:

- 22. 28th term: ? <mark>274.7411</mark> sequence: 2, 2.4, 2.88, 3.456, 4.1472,... Common ratio: $r = \sqrt{3}$ 23. 1st term: - 11
 - <mark>-8019√3</mark> what is the 14th term?

Find the sum of the finite geometric series.

24.
$$\sum_{k=1}^{10} 4\left(\frac{3}{2}\right)^{k-1}$$
 453.320
25. $\sum_{n=1}^{15} 3\left(\frac{5}{4}\right)^n$ 329.06

Infinite Geometric Series:

Decide whether the infinite geometric series has a sum.

26.
$$\sum_{n=1}^{\infty} 3(\frac{6}{5})^{n-1}$$
 no sum
27. $\sum_{n=1}^{\infty} \frac{1}{2}(\frac{1}{4})^{n-1}$ yes, has sum

Find the sum of the infinite geometric series (if it has one).

Binomial Theorem:

Evaluate the binomial coefficient.

Use Pascal's Triangle to find the binomial coefficient.

Use the Binomial Theorem to expand the binomial.

- 34. $(x-3)^5$ $x^5 15x^4 + 90x^3 270x^2 + 405x 243$
- $35. (2x-3)^3 \qquad 8x^3 36x^2 + 54x 27$
- 36. $(3-2x)^3$ 27 54x + 36x² 8x³

Use Pascal's Triangle to expand the binomial.

37.
$$(x - 2y)^4$$
 $x^4 - 8x^3y + 24x^2y^2 - 32xy^3 + 16y^4$

38. $(2x - y)^3$ $8x^3 - 12x^2y + 6xy^2 - y^3$

Find the indicated term of the binomial expansion.

