TabletClass.com

Sequence and Series Introduction:
Write the first five terms of the sequence.

1. $\mathrm{a}_{\mathrm{n}}=\mathrm{n}!$ assume that n begins with 0
2. $\mathrm{a}_{\mathrm{n}}=1-\frac{1}{n}$ assume that n begins with 1
3. $\mathrm{a}_{\mathrm{n}}=\frac{n!}{(n+2)!}$ assume that n begins with 0
4. $\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{n}}{\mathrm{n}^{2}+1}$ assume that n begins with 1
5. $\mathrm{a}_{\mathrm{n}}=\frac{(-1)^{n}}{\mathrm{n}!} \quad$ assume that n begins with 1

Find the sum.
6. $\sum_{\mathrm{n}=1}^{4} \frac{n+1}{n+2}$
7. $\sum_{i=1}^{4}(1-i)$
8. $\sum_{\mathrm{k}=2}^{6}(-1)^{\mathrm{k}}(2 \mathrm{k})$
9. $\sum_{\mathrm{i}=0}^{3} \mathrm{i}$!

Arithmetic Sequence and Series:

10. Find the first 4 terms of the arithmetic sequence given the first term $=4$ and common difference $=-3$.
11. Find the first 4 terms of the arithmetic sequence given the first term $=4$ and common difference $=-2$.

Answer the question about the following arithmetic sequences:
12. Common difference: - 3
$1^{\text {st }}$ term: 7
what is the 99th term? (assume n starts with 1)
13. Common difference: - 2

3rd term: 15
what is the nth formula? (assume n starts with 1)
14. Common difference: 7

1st term: 2
what is the 17th term? (assume n starts with 1)

Evaluate the sum of the arithmetic series.
15. $\sum_{n=1}^{50}(2 n+3)$

Geometric Sequence and Series:

16. Determine whether the sequence $3,-2, \frac{4}{3},-\frac{8}{9}, \frac{16}{27}, \ldots$ is geometric. If it is, find its common ratio.
17. Find the first 5 terms of the geometric sequence with $a_{1}=2$ and $r=\frac{2}{3}$

Find the indicated term of the geometric sequence.
18. $a_{1}=5, r=1.1, a_{20}=$?
19. $\mathrm{a}_{1}=-23, \mathrm{r}=\sqrt{2}, \quad \mathrm{a}_{23}=$?

Write a formula for the nth term of the geometric sequence.
20. $\mathrm{a}_{1}=2, \mathrm{r}=-\frac{1}{3}$ (assume n starts with 1)
21. $a_{1}=4, r=\frac{1}{3} \quad($ assume n starts with 1$)$

Answer the question about the following geometric sequences:
22. 28th term: ?
sequence: 2, 2.4, 2.88, 3.456, 4.1472,..
23. Common ratio: $r=\sqrt{3}$

1st term: - 11
what is the $14^{\text {th }}$ term?

Find the sum of the finite geometric series.
24. $\sum_{\mathrm{k}=1}^{10} 4\left(\frac{3}{2}\right)^{\mathrm{k}-1}$
25. $\sum_{n=1}^{15} 3\left(\frac{5}{4}\right)^{n}$

Infinite Geometric Series:

Decide whether the infinite geometric series has a sum.
26. $\sum_{n=1}^{\infty} 3\left(\frac{6}{5}\right)^{n-1}$
27. $\sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{1}{4}\right)^{n-1}$

Find the sum of the infinite geometric series (if it has one).
28. $\sum_{n=0}^{\infty} 4\left(\frac{2}{3}\right)^{n}$
29. $\sum_{n=1}^{\infty} 3\left(-\frac{1}{2}\right)^{n}$

Binomial Theorem:

Evaluate the binomial coefficient.
30. $\binom{9}{7}$
31. $\binom{9}{5}$

Use Pascal's Triangle to find the binomial coefficient.
32. $\binom{6}{2}$
33. $\binom{6}{4}$

Use the Binomial Theorem to expand the binomial.
34. $(x-3)^{5}$
35. $(2 x-3)^{3}$
36. $(3-2 x)^{3}$

Use Pascal's Triangle to expand the binomial.
37. $(x-2 y)^{4}$
38. $(2 x-y)^{3}$

Find the indicated term of the binomial expansion.
39. $(4 \mathrm{~h}-\mathrm{j})^{8} \quad$ 6th term
40. $\left(a^{2}+b\right)^{22} \quad$ 15th term

Answer Key:

Sequence and Series Introduction:

Write the first five terms of the sequence.

1. $\mathrm{a}_{\mathrm{n}}=\mathrm{n}$! assume that n begins with $0 \quad 1,1,2,6,24$
2. $\mathrm{a}_{\mathrm{n}}=1-\frac{1}{n}$ assume that n begins with $1 \quad 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$
3. $\mathrm{a}_{\mathrm{n}}=\frac{n!}{(n+2)!}$ assume that n begins with $0 \quad \frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \frac{1}{30}$
4. $\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{n}}{\mathrm{n}^{2}+1}$ assume that n begins with $1 \quad \frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \frac{4}{17}, \frac{5}{26}$
5. $\mathrm{a}_{\mathrm{n}}=\frac{(-1)^{n}}{\mathrm{n}!} \quad$ assume that n begins with $1 \quad-1, \frac{1}{2},-\frac{1}{6}, \frac{1}{24},-\frac{1}{120}$

Find the sum.
6. $\sum_{\mathrm{n}=1}^{4} \frac{n+1}{n+2} \quad \frac{61}{20}$
7. $\sum_{i=1}^{4}(1-i)-6$
8. $\sum_{\mathrm{k}=2}^{6}(-1)^{\mathrm{k}}(2 \mathrm{k}) \quad 8$
9. $\sum_{\mathrm{i}=0}^{3} \mathrm{i}!\quad 10$

Arithmetic Sequence and Series:
10. Find the first 4 terms of the arithmetic sequence given the first term $=4$ and common difference $=-3 . \quad 4,1,-2,-5, \ldots$
11. Find the first 4 terms of the arithmetic sequence given the first term $=4$ and common difference $=-2$.

$$
4,2,0,-2, \ldots
$$

Answer the question about the following arithmetic sequences:
12. Common difference: - 3
$1^{\text {st }}$ term: 7
what is the 99th term? (assume n starts with 1)
13. Common difference: - 2

3rd term: 15
what is the nth formula? (assume n starts with 1)

$$
a_{n}=-2 n+21
$$

14. Common difference: 7

1st term: 2
what is the 17 th term? (assume n starts with 1)

Evaluate the sum of the arithmetic series.
15. $\sum_{n=1}^{50}(2 n+3) \quad 2700$

Geometric Sequence and Series:

16. Determine whether the sequence $3,-2, \frac{4}{3},-\frac{8}{9}, \frac{16}{27}, \ldots$ is geometric. If it is, find its common ratio.

$$
\text { Yes, } r=-2 / 3
$$

17. Find the first 5 terms of the geometric sequence with $\mathrm{a}_{1}=2$ and $r=\frac{2}{3} \quad 2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27}, \frac{32}{81}$

Find the indicated term of the geometric sequence.
18. $\mathrm{a}_{1}=5, \mathrm{r}=1.1, \quad \mathrm{a}_{20}=$?
30.5795
19. $\mathrm{a}_{1}=-23, \mathrm{r}=\sqrt{2}, \quad \mathrm{a}_{23}=? \quad-47104$

Write a formula for the nth term of the geometric sequence.
20. $a_{1}=2, \quad r=-\frac{1}{3} \quad($ assume n starts with 1$)$

$$
a_{n}=2\left(-\frac{1}{3}\right)^{n-1}
$$

21. $a_{1}=4, r=\frac{1}{3}$ (assume n starts with 1$)$

$$
a_{n}=4\left(\frac{1}{3}\right)^{n-1}
$$

Answer the question about the following geometric sequences:
22. 28th term: ? 274.7411 sequence: 2, 2.4, 2.88, 3.456, 4.1472,..
23. Common ratio: $r=\sqrt{3}$

1st term: - 11
what is the $14^{\text {th }}$ term?

$$
-8019 \sqrt{3}
$$

Find the sum of the finite geometric series.
24. $\sum_{\mathrm{k}=1}^{10} 4\left(\frac{3}{2}\right)^{\mathrm{k}-1}$
453.320
25. $\sum_{n=1}^{15} 3\left(\frac{5}{4}\right)^{n}$
329.06

Infinite Geometric Series:

Decide whether the infinite geometric series has a sum.
26. $\sum_{n=1}^{\infty} 3\left(\frac{6}{5}\right)^{n-1}$
no sum
27. $\sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{1}{4}\right)^{n-1}$
yes, has sum

Find the sum of the infinite geometric series (if it has one).
28. $\sum_{n=0}^{\infty} 4\left(\frac{2}{3}\right)^{n}$
29. $\sum_{n=1}^{\infty} 3\left(-\frac{1}{2}\right)^{n}$

2

Binomial Theorem:

Evaluate the binomial coefficient.
30. $\binom{9}{7}$

36
31. $\binom{9}{5}$

Use Pascal's Triangle to find the binomial coefficient.
32. $\binom{6}{2} \quad 15$
33. $\binom{6}{4} \quad 15$

Use the Binomial Theorem to expand the binomial.
34. $(\mathrm{x}-3)^{5} \quad x^{5}-15 x^{4}+90 x^{3}-270 x^{2}+405 x-243$
35. $(2 \mathrm{x}-3)^{3} \quad 8 x^{3}-36 x^{2}+54 x-27$
36. $(3-2 x)^{3} \quad 27-54 x+36 x^{2}-8 x^{3}$

Use Pascal's Triangle to expand the binomial.
37. $(\mathrm{x}-2 \mathrm{y})^{4} \quad x^{4}-8 x^{3} y+24 x^{2} y^{2}-32 x y^{3}+16 y^{4}$
38. $(2 \mathrm{x}-\mathrm{y})^{3} \quad 8 x^{3}-12 x^{2} y+6 x y^{2}-y^{3}$

Find the indicated term of the binomial expansion.
39. $(4 \mathrm{~h}-\mathrm{j})^{8} \quad$ 6th term $\quad-3584 \mathrm{~h}^{3} j^{5}$
40. $\left(a^{2}+b\right)^{22} \quad$ 15th term $\quad 319,770 a^{16} b^{14}$

