Triangle Bisector Theorems 5.2

 Overview of Problems

 Overview of Problems}

Example Set: A

Verify the theorem:

1. Draw a line segment.
2. Next draw the perpendicular bisector through the segment.
3. Plot a point on the perpendicular bisector.
4. Verify(by measuring) the theorem that if a point lies on the perpendicular bisector of a segment, then the point is equidistant from the endpoints of the segment.

Example Set: B

1. Given: Z is on the perpendicular

Bisector of both $\overline{S T}$ and $\overline{T W}$
Prove: $S Z=W Z$

Triangle Bisector Theorems 5.2

 Overview of Problems

 Overview of Problems

 Example Set: A -ANSWER KEY

 Example Set: A -ANSWER KEY}

Verify the theorem:

1. Draw a line segment.
2. Next draw the perpendicular bisector through the segment.
3. Plot a point on the perpendicular bisector.
4. Verify(by measuring) the theorem that if a point lies on the perpendicular bisector of a segment, then the point is equidistant from the endpoints of the segment.

Triangle Bisector Theorems 5.2

Overview of Problems

Example Set: B- ANSWER KEY

1. Given: Z is on the perpendicular

Bisector of both $\overline{S T}$ and $\overline{T W}$
Prove: $S Z=W Z$

Statement	Reason
Z is on the \perp bisec of $\overline{S T}, \overline{T W}$	Given
$S Z=Z T \quad Z T=W Z$	If a point is on the \perp bisector then it's equidistant from the endpoints.
$S Z=W Z$	Trans. Prop.

