Triangle Bisector Theorems 5.2

Overview of Problems

Example Set: A

Verify the theorem:

- 1. Draw a line segment.
- 2. Next draw the perpendicular bisector through the segment.
- 3. Plot a point on the perpendicular bisector.
- 4. Verify(by measuring) the theorem that if a point lies on the perpendicular bisector of a segment, then the point is equidistant from the endpoints of the segment.

🚩 Exam

Example Set: B

1. Given: Z is on the perpendicular Bisector of both \overline{ST} and \overline{TW} Prove: SZ = WZ

Overview of Problems

Example Set: A -ANSWER KEY

Verify the theorem:

- 1. Draw a line segment.
- 2. Next draw the perpendicular bisector through the segment.
- 3. Plot a point on the perpendicular bisector.
- 4. Verify(by measuring) the theorem that if a point lies on the perpendicular bisector of a segment, then the point is equidistant from the endpoints of the segment.

Triangle Bisector Theorems 5.2

Overview of Problems

Example Set: B- ANSWER KEY

1. Given: Z is on the perpendicular Bisector of both \overline{ST} and \overline{TW}

Prove: SZ = WZ

~

Statement	Reason
z is on the \perp bisec of \overline{ST} , \overline{TW}	Given
SZ = ZT $ZT = WZ$	If a point is on the ⊥ bisector then it's equidistant from the endpoints.
SZ = WZ	Trans. Prop.