Quadratic Equations
Chapter Review

Solving by Taking Square Roots

- Always two solutions in quadratic equations
- Can not take the square-root of a negative number - in the Real Number system

Example,

Steps

1. Isolate the " x " term
2. Take the square-root of both sides

Example

$$
\left\{\begin{array}{r}
2 x^{2}-4=10 \\
+4+4 \\
\hline \frac{2 x^{2}}{2}=\frac{14}{2} \\
x^{2}=7
\end{array}\right.
$$

Step 2

$$
\begin{aligned}
\sqrt{x^{2}} & =\sqrt{7} \\
x & = \pm \sqrt{7}
\end{aligned}
$$

Graphing Quadratic Equations
Steps

1. Find the vertex
(" U"-shape)
2. Graph - the shape is always a parabola

Example $\quad y=2 x^{2}+4 x-8$
Finding vertex - write equation is standard form (highest \rightarrow lowest power, $a x^{2}+b x+c=0$)

$$
\begin{array}{cc}
y=2 x^{2}+4 x-8 & \text { vertex is located } \\
\uparrow \quad \uparrow \quad \uparrow & \text { at }\left(\frac{-b}{2 a}, \quad f\left(\frac{-b}{2 a}\right)\right) \\
a=2 \quad b=4 \quad c=-8 & \uparrow
\end{array}
$$

$$
\text { Find } \frac{-b}{2 a}=\frac{-(4)}{2(2)}=\frac{-4}{4}=-1
$$

Find $f\left(-\frac{b}{2 a}\right) \rightarrow$ plug in $\frac{-b}{2 a}$ into equation

$$
\begin{aligned}
y & =2 x^{2}+4 x-8 \\
& =2(-1)^{2}+4(-1)-8=2(1)+-4-8=-10
\end{aligned}
$$

vertex $(-1,-10), \quad y=2 x^{2}+4 x-8$
\uparrow
x^{2} term is positive graph upward parabola x^{2} term negative - downward

Graph upward parabola from $(-1,-10)$

Quadratic Formula

- Very important! Need to master it to solve quadratic equations
When you have $a x^{2}+b x+c=0$
the solutions are
Example Solve

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x^{2}-9 x=-8
$$

\uparrow
plug in values

$$
\begin{aligned}
& x=\frac{-(-9) \pm \sqrt{(-9)^{2}-4(1)(8)}}{2(1)} \\
& x=\frac{9 \pm \sqrt{81-32}}{2} \\
& x=\frac{9 \pm \sqrt{49}}{2}
\end{aligned}
$$

Solutions \rightarrow
First write in standard form $1 x^{2}-9 x+8=0$ $a=1 \quad b=-9 \quad c=8$

Solutions $\rightarrow x=\frac{2}{x} \quad x=1$

Solve Quadratic Equations by Factoring

- Need to know how to factor polynomials
- Only works when you can factor - otherwise use quadratic formula
- Based on zero-product property

Example $\begin{gathered}x^{2}-9 x+8=0 \\ \\ \frac{(x-1}{r} \frac{(x-8)}{r}=0\end{gathered} \quad$ Factor first
ZeRo \int One of these terms must be zero, product $\{$ because that the only way you can property $\left\{\begin{array}{l}\text { the equation (left side) CAN } \\ \text { equal to zeRO (right side) }\end{array}\right.$

Solve by setting both factors equal to zero

$$
\begin{array}{rr}
x-1=0 & x-8=0 \\
x=1 & x=8
\end{array} \leftarrow \text { solutions }
$$

The Discriminant- Type of Roots

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}<\text { the } b^{2}-4 a c \text { part }
$$

When:

Note: "root" - means solutions

- A method to rewrite a quadratic equation in such a way as to solve by taking the square-root of both sides

Example

1. write in
standard form $\left(a x^{2}+b x+c=0\right)$

$$
\begin{aligned}
& x^{2}-9 x+8=0 \quad \begin{array}{l}
\text { move } c \text { to } \\
x^{2}-9 x=-8 \\
x^{2}-9 x+\left(-\frac{9}{2}\right)^{2}=-8+\left(-\frac{9}{2}\right)^{2}
\end{array}
\end{aligned}
$$ add $\left(\frac{b}{2}\right)^{2}$ to both sides

$$
\left(x-\frac{9}{2}\right)^{2}=\frac{49}{4}
$$

Factor
$\begin{aligned} & \text { Solve by } \\ & \text { taking }\end{aligned} \rightarrow \sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{49}{4}}$ both sides

$$
x-\frac{9}{2}= \pm \frac{7}{2}
$$

$$
\begin{gathered}
x-\frac{9}{2}=\frac{7}{2} \\
x=\frac{7}{2}+\frac{9}{2}=\frac{16}{2}=8
\end{gathered}
$$

$$
x-\frac{9}{2}=-\frac{7}{2}
$$

Solutions

Graphing Quadratic Inequalities
Graph using same steps as linear inequalities

$$
y<2 x^{2}+4 x-8
$$

\uparrow
 boarder is - - -

Test a point, I like $(0,0)$

$$
\begin{aligned}
& 0<2(0)^{2}+4(0)-8 \\
& 0<-8
\end{aligned}
$$

\uparrow
False statement -shade under parabola

